Software Engineering Tools **01**Syntax, Semantics, Types

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

16. April 2014

What do programs mean?

Let's run the following program in some language:

```
print(32767 + 1);
```

Which of the following outputs is correct?

- 32768
- \bullet 32767 + 1
- -32768
- banana
- no visible output

Must know the program's meaning

Semantics

Semantics: The study of meaning (logic, linguistics)

- "meaning should follow structure"
 - This is a hypothesis in linguistics (seems to hold)
 - And a proposal in logic (turns out to work reasonably well)

Example:

- If expression 'X' has meaning 'v'
- And expression 'Y' has meaning 'w'
- Then expression '(X) / (Y)' has meaning 'whatever number you get when you compute $\frac{\nu}{w}$ '

What if 'v' is not a number, or 'w' is zero?

Overview

Today we will look at:

- syntax: Describe structure of programs
- semantics: Derive meaning from syntax
 - static semantics: Meaning that is assigned before the program runs (mostly types, errors)
 - dynamic semantics: Run-time meaning
 - We won't explore this separation in detail today
- types: Describe 'semantic structure' of programs

Backus-Naur Form: Specifying Syntax

Assume nat is a natural number:

Formalise the rules with Backus-Naur-Form (BNF):

- 'Any number is an expression.'
 - expr ::= nat
- 'Any two expressions with a + in between is also an expression.'
 - $expr ::= \langle expr \rangle$ '+' $\langle expr \rangle$
- 'Any two expressions with a * in between is also an expression.'
 - $expr ::= \langle expr \rangle$ '*' $\langle expr \rangle$

Or in short:

$$expr ::= nat \mid \langle expr \rangle$$
'+' $\langle expr \rangle \mid \langle expr \rangle$ '*' $\langle expr \rangle$

Backus-Naur Form: Example

$$expr ::= nat \mid \langle expr \rangle' + '\langle expr \rangle \mid \langle expr \rangle' * '\langle expr \rangle$$

$$(1+2)*3 \qquad \langle expr \rangle$$

$$1 \qquad + \qquad 2 \qquad * \qquad 3$$

$$\langle expr \rangle$$

$$1 + (2*3) \qquad \langle expr \rangle$$

Ambiguity! Parsers must know which parse we mean!

Syntax of a simple toy language

Syntax of language STOL:

```
\begin{array}{ll} \textit{expr} & ::= & \textit{nat} \\ & | & \langle \textit{expr} \rangle \text{`+'} \langle \textit{expr} \rangle \\ & | & \text{`ifnz'} \langle \textit{expr} \rangle \text{`then'} \langle \textit{expr} \rangle \text{`else'} \langle \textit{expr} \rangle \end{array}
```

Examples:

- 5
- 5 + 27
- ifnz 5 + 2 then 0 else 1

Meaning of our toy language: examples

What we want the meaning to be:

5	5
5 + 27	32
ifnz 5 + 2 then 1 else 0	1

Can we describe this formally?

Defining Meaning

The principal schools of semantics:

Denotational Semantics

- Maps program to mathematical object
- Equational theory to reason about programs

Directly maps program to its mathematical 'meaning'

Denotational semantics of STOL

Distinguish:

- nat is set of program numbers (0, 1, 2, ...) (In compilers: *character strings*)
- \mathbb{N} is set of natural numbers (0, 1, 2, ...) (In compilers: *unsigned int* or *BigInt* types)

Operational Semantics: The two branches

- Natural Semantics (Big-Step Semantics)
 - $p \Downarrow v$: p evaluates to v
 - Describes complete evaluation
 - Compact, useful to describe interpreters
- Structural Operational Semantics (Small-Step Semantics)
 - $p_1 o p_2$: p_1 evaluates one step to p_2
 - Captures individual evaluation steps
 - Verbose/detailed, useful for formal proofs

Natural (Operational) Semantics

If P_1, \ldots, P_n all hold, then e evaluates to v.

- e: Arbitrary program (expression, in our example)
- v: Value that can't be evaluated any further (natural number, in our example)

Natural Semantics of our simple toy language

$$n, n_1, n_2, n_3 \in \text{nat}$$
 $e, e_1, e_2, e_3 \in \text{expr}$

$$\frac{n \Downarrow n}{n \Downarrow n} \text{ (val)} \qquad \frac{e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2 \quad n = n_1 + n_2}{e_1 + e_2 \Downarrow n} \text{ (add)}$$

$$\frac{e_1 \Downarrow n \quad n \neq 0 \quad e_2 \Downarrow n_2}{\text{ifnz } e_1 \text{ then } e_2 \text{ else } e_3 \Downarrow n_2} \text{ (ifnz)}$$

$$\frac{e_1 \Downarrow 0 \quad e_3 \Downarrow n_3}{\text{ifnz } e_1 \text{ then } e_2 \text{ else } e_3 \Downarrow n_3} \text{ (ifz)}$$

Note:

- (+) is arithmetic addition
- + is a symbol in our language
- For simplicity, we set $nat = \mathbb{N}$

Natural Semantics: Example

$$\frac{\overline{3 \Downarrow 3} \text{ (val)}}{\frac{3+2 \Downarrow 5}{\text{ ifnz } 3+2 \text{ then } 1 \text{ else } 0 \Downarrow 0}} \underbrace{\begin{array}{c} \text{(ifnz)} \\ \text{val} \\ \text{(ifnz)} \end{array}}_{}^{}$$

What's the point?

- Denotational and natural semantics look very similar
- Structural differences:
 - ullet Denotational semantics describe a function $[\![-]\!]$
 - Natural semantics define a relation (\Downarrow)
 - Denotational semantics relies on mathematical domain with underlying equational theory
- Practical differences:
 - Natural Semantics requires less formal apparatus to describe (no domains)
 - Natural Semantics can't describe partial progress in non-terminating programs

Name bindings $x \in name$:

Example:

$$[\![$$
 let x = 2 + 3 **in** x + x $\!]\!] = 10$

But what is [x] by itself?

Environments

The meaning of a variable depends on what value we bind it to.

Environment: $E : name \rightarrow value$

- Environments are partial functions from names to 'values'
- In our running example, value = nat

Notation:

let
$$E' = E + x \mapsto v$$

then:
$$E'(y) = \begin{cases} v & \iff y = x \\ E(y) & otherwise \end{cases}$$

Environments in Denotational Semantics

Introduce *E* as index to semantic function:

$$\llbracket - \rrbracket_E = \dots$$

```
\begin{array}{rcl} n & \in & \mathsf{nat} \\ e, e_1, e_2, e_3 & \in & \mathsf{expr} \\ & x & \in & \mathsf{name} \\ & \| n \|_E & = & n \ \mathsf{interpreted} \ \mathsf{in} \ \mathbb{N} \\ & \| e_1 + e_2 \|_E & = & \| e_1 \|_E + \| e_2 \|_E \\ \| \mathbf{ifnz} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 \|_E & = & \left\{ \begin{array}{c} \| e_2 \|_E & \Longleftrightarrow & \| e_1 \|_E \neq 0 \\ \| e_3 \|_E & \Longleftrightarrow & \| e_1 \|_E = 0 \end{array} \right. \\ & \| \mathbf{x} \|_E & = & E(x) \\ \| \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \|_E & = & \| e_2 \|_{E+x \mapsto \| e_1 \|_E} \end{array}
```

Environments in Natural Semantics

We borrow the turnstile (\vdash) from formal logic:

$$\frac{E \vdash e_1 \Downarrow n_1 \quad E \vdash e_2 \Downarrow n_2 \quad n = n_1 + n_2}{E \vdash e_1 \Downarrow e_2 \Downarrow n} \quad (add)$$

$$\frac{E \vdash e_1 \Downarrow n \quad n \neq 0 \quad E \vdash e_2 \Downarrow n_2}{E \vdash \mathbf{ifnz} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 \Downarrow n_2} \ (\mathit{ifnz})$$

$$\frac{E \vdash e_1 \Downarrow 0 \quad E \vdash e_3 \Downarrow n_3}{E \vdash \mathbf{ifnz} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 \Downarrow n_3} \ (ifz)$$

$$\frac{E(x) = v}{E \vdash x \Downarrow v} \ (var)$$

$$\frac{E \vdash e_1 \Downarrow v \quad (E + x \mapsto v) \vdash e_2 \Downarrow v'}{E \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \Downarrow v'} \ (\mathit{let})$$

STOL-S: Extending our language with assignments

Side effects play an important role in realistic programs

- Must be modelled, for realism
- ullet Tricky to model \Rightarrow purely functional languages have simpler semantic models

We extend STOL to STOL-S:

STOL-S: State updates

- **ref** 42 allocates memory cell, stores 42 (cf. malloc() or new).
- ! p Reads memory from memory cell in variable p (cf. *p for pointers p in C).
- p := 23 Updates memory cell in p with 23 (cf. *p = 23 in C).
- (p := 23; !p) Sequence: assigns, then reads&returns (Sequencing operation, cf. { *p = 23; return *p; })

Example:

```
let r = ref 7
in (
    r := !r + !r;
    !r + 1)
```

Stores

Store: $S : \mathbf{ref} \rightarrow \mathbf{value}$

- Analogous to environments
- Store maps memory references ('ref') to 'values'
- Again, value = nat (for now)

Stores in Natural Semantics (1)

- Recursive evaluation may update the store. . .
- ... which the caller must be able to see.
- We adjust \Downarrow to evalute tuples $\langle e, S \rangle$: $E \vdash \langle e, S \rangle \Downarrow \langle v, S' \rangle$ means:
 - Given an environment E and a store S:
 - \bullet e evaluates to v, and
 - S is updated to S' in the process

Example:

$$\frac{E \vdash \langle e_1, S \rangle \Downarrow \langle n_1, S' \rangle \quad E \vdash \langle e_2, S' \rangle \Downarrow \langle n_2, S'' \rangle \quad n = n_1 + n_2}{E \vdash \langle e_1 + e_2, S \rangle \Downarrow \langle n, S'' \rangle} \quad (add)$$

State is threaded through the rule: evaluation order

Stores in Natural Semantics (2)

$$\frac{E \vdash \langle e, S \rangle \Downarrow \langle v, S' \rangle \quad \rho \text{ fresh in } S'}{E \vdash \langle \mathbf{ref} \ e, S \rangle \Downarrow \langle \rho, S' + \rho \mapsto v \rangle} \text{ (ref)}$$

$$\frac{E \vdash \langle e, S \rangle \Downarrow \langle \rho, S' \rangle \quad v = S'(\rho)}{E \vdash \langle !e, S \rangle \Downarrow \langle v, S' \rangle} \text{ (read)}$$

$$\frac{E \vdash \langle e_1, S \rangle \Downarrow \langle \rho, S' \rangle \quad E \vdash \langle e_2, S' \rangle \Downarrow \langle v, S'' \rangle \quad \rho \in dom (S'')}{E \vdash \langle e_1 := e_2, S \rangle \Downarrow \langle 0, S'' + \rho \mapsto v \rangle} \text{ (update)}$$

$$\frac{E \vdash \langle e_1, S \rangle \Downarrow \langle v, S' \rangle \quad E \vdash \langle e_2, S' \rangle \Downarrow \langle v', S'' \rangle}{E \vdash \langle (e_1; e_2), S \rangle \Downarrow \langle v', S'' \rangle} \text{ (seq)}$$

Analogously for the other rules.

Defining Meaning

Let's consider the other schools of semantics now:

Structural Operational Semantics (SOS)

(Definition on STOL)

$$\frac{e_1 \rightarrow^{\star} 0}{\text{ifnz } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow e_3} \text{ (ifz)}$$

$$\frac{e_1 \rightarrow^\star n \quad \exists \textit{n'}.\textit{n} \rightarrow \textit{n'} \quad \textit{n} \neq 0}{\text{ifnz} \ e_1 \ \text{then} \ e_2 \ \text{else} \ e_3 \rightarrow e_2} \ (\textit{ifnz})$$

Comparison to Natural Semantics:

$\Downarrow\subseteqexpr imesnat$	$ ightarrow \subseteq expr imes expr$
rhs is alwyas <i>fully</i> evaluated	rhs can be intermediate result

SOS can capture intermediate computational results

Axiomatic Semantics

Describe statements- not good fit for our current langauge

$$\{P\}$$
statement $\{Q\}$

- P: Precondition
- Q: Postcondition
- if P holds, then *statement* ensures that Q holds

Example:

$$\{x \ge 0\}$$
x := x + 1; $\{x > 0\}$

Frequently used for "design-by-contract" software development

Algebraic Semantics

Specification using techniques of abstract algebra, e.g.:

Sorts list, int, string

Operations empty : list

 $\begin{array}{lll} \mathsf{add} & : & \mathsf{list} \times \mathsf{string} \to \mathsf{list} \\ \mathsf{get} & : & \mathsf{list} \times \mathsf{int} \to \mathsf{string} \end{array}$

 $\mathsf{size} \qquad : \quad \mathsf{list} \to \mathbf{int}$

 $\mathsf{concat} \;\; : \;\; \mathsf{list} \times \mathsf{list} \to \mathsf{list}$

Axioms size(empty) = 0

 $\forall \ell : \mathsf{list}, s : \mathsf{string.get}(\mathsf{add}(\ell, s), \mathsf{size}(\ell)) = s$

 $\forall \ell : \mathsf{list}, s : \mathsf{string.size}(\mathsf{add}(\ell, s)) = \mathsf{size}(\ell) + 1$

 $\forall \ell_1, \ell_2 : \mathsf{list.size}(\mathsf{concat}(\ell_1, \ell_2)) = \mathsf{size}(\ell_1) + \mathsf{size}(\ell_2)$

Comparison

- Denotational Semantics
 Equational theory, also describes nontermination
- Natural Semantics
 Compact, describes interpreter, doesn't give semantics to nonterminating programs
- Structural Operational Semantics
 Describes evaluation strategy, approximates semantics for nontermination
- Axiomatic Semantics
 Describes effect of statements (before/after), no nontermination
- Algebraic Semantics
 Describes effect of operations on opaque data structures,
 no nontermination

Types

e: au

Types are $\emph{contracts}$: \emph{e} must keep any promise made by τ Typical promises:

- 'Any $e: \tau$ is a number between 0 and 42'
- 'Any $e : \tau$ is a record with a field \mathbf{x} '
- 'Any $e : \tau$ has a method m()'

Types as Sets

Example:

- ullet int: The type of integers, $\mathbb Z$
- ullet nat: The type of natural numbers, $\mathbb N$

STOL with Subtraction

Let's introduce subtraction to STOL:

```
\begin{array}{lll} expr & ::= & nat \\ & | & \langle expr \rangle \text{`+'} \langle expr \rangle \\ & | & \text{`ifnz'} \langle expr \rangle \text{`then'} \langle expr \rangle \text{`else'} \langle expr \rangle \\ & | & name \\ & | & \text{`let'} name \text{`='} \langle expr \rangle \text{`in'} \langle expr \rangle \\ & | & \langle expr \rangle \text{`-'} \langle expr \rangle \end{array}
```

A type system for STOL

- Goal: Detect which variables may be negative.
- Approach: Type analysis

Type environment: Γ : name $\rightarrow type$

where type is the set of all types.

$$\overline{\Gamma \vdash n : nat}$$
 (nat)

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \text{ (var)}$$

$$\frac{\Gamma \vdash e_1 : \sigma \quad (\Gamma + x \mapsto \sigma) \vdash e_2 : \tau}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : \tau} \ (\mathit{let})$$

Addition and Subtraction

```
\frac{\Gamma \vdash n : \text{nat}}{\Gamma} \stackrel{\text{(nat)}}{=} \\
\vdots \\
\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 - e_2 : \text{int}} \stackrel{\text{(sub)}}{=}
```

How can we pass nat values to subtraction, though?

Subtypes and Implicit Conversion

One option:

- Introduce subtyping
- $\tau <: \sigma$ iff τ is subtype of σ .
- Meaning: if $e:\tau$, then we can use e anywhere we need a σ .

Formalised in the Subsumption rule:

$$\frac{\Gamma \vdash n : \tau \quad \tau <: \sigma}{\Gamma \vdash n : \sigma}$$
 (subsumption)

We set: nat <: int

Example

```
\frac{\Gamma'(z) = \text{nat}}{\frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash z : \text{nat}}} \frac{\Gamma' \vdash z : \text{nat}}{\text{nat} <: \text{int}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash z : \text{int}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash z : \text{int}} \frac{\Gamma \vdash z : \text{int}}{\Gamma \vdash z : \text{int}}
\frac{\Gamma \vdash 1 : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z - 2 : \text{int}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1 : \text{nat}} \frac{\Gamma' \vdash z : \text{nat}}{\Gamma \vdash 1
```

STOL-S and assignments

How do we type references?

STOL-S and assignments: parametric 'ref'

- Refences need their own type
- But: must distinguish references to nat vs. references to int
 - ...and reference-to-reference-to-nat etc.
- ullet Solution: parametric type $\mathbf{ref}\langle lpha
 angle$
 - ref(nat): reference to natural numbers
 - ref(int): reference to integers
 - ref(ref(int)): reference to references to integers

STOL-S: typing rules

$$\frac{E \vdash e : \alpha}{E \vdash \mathbf{ref} \ e : \mathbf{ref} \langle \alpha \rangle} \ (\textit{ref})$$

$$\frac{E \vdash e : \mathbf{ref} \langle \alpha \rangle}{E \vdash !e : \alpha} \ (\textit{read})$$

$$\frac{E \vdash e_1 : \mathbf{ref} \langle \alpha \rangle}{E \vdash e_1 : = e_2 : \mathsf{nat}} \ (\textit{update})$$

Subtyping ref and its parameters

Assume:

i : int

 r_i : ref $\langle int \rangle$ r_n : ref $\langle nat \rangle$

Should $ref\langle int \rangle$ and $ref\langle nat \rangle$ be subtypes?

- ref(int) :> ref(nat) ?
 - If so: $r_n := i$ typechecks
 - ullet Can assign -1 to non-negative memory!
- ref(int) <: ref(nat) ?</pre>
 - If so: $!(ifnz \ 1 \ then \ r_i \ else \ r_n) : nat$
 - Type checker believes that read from (possibly negative) memory is nonnegative!

Covariance and Contravariance

$$\tau \langle \alpha \rangle <: \tau \langle \beta \rangle$$

... is allowed if τ 's type parameter is...

	(no constraint)	$\alpha <: \beta$
(no constraint)	bivariant	covariant
$\alpha :> \beta$	contravariant	invariant $(\alpha = \beta)$

Rules of thumb:

- Type parameter occurs read-only: covariant
- Type parameter occurs write-only: contravariant

Using Type systems

Type systems should have the following properties:

- preservation: a well-typed program does not change its type during execution
- progress: a well-typed program does not 'get stuck' during execution

If these are guaranteed, we can:

- Use type systems to check for errors
- Use type systems to analyse properties (e.g., 'could this number ever be negative?')

Literature (1)

- Natural Semantics:
 - Gilles Kahn, "Natural Semantics"
- Structural Operational Semantics:
 - Gordon Plotkin, "Natural Semantics"
- Axiomatic Semantics:
 - David Gries, "The Science of Programming"
 - C.A.R. Hoare, "An axiomatic basis for computer programming". Communications of the ACM 12
- Algebraic Semantics:
 - S Antoy. "Systematic design of algebraic specifications". In Proceedings of the Fifth International Workshop on Software Specification and Design

Literature (2)

- Types:
 - Kim Bruce, "Foundations of Object-Oriented Programming"
 - Benjamin Pierce, "Types and Programming Languages"
- Proofs:
 - Jean-Yves Girard, Taylor, Lafont: "Proofs and Types"

Next week:

Static Program Analysis