Software Engineering Tools 01

Syntax, Semantics, Types

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut fiir Informatik

16. April 2014

syntax

What do programs mean?

Let's run the following program in some language:

print (32767 + 1);

Which of the following outputs is correct?
e 32768
e 32767 + 1
e -32768
e banana
@ no visible output

Must know the program’s meaning

syntax

Semantics

Semantics: The study of meaning (logic, linguistics)

e “meaning should follow structure”
o This is a hypothesis in linguistics
(seems to hold)
e And a proposal in logic
(turns out to work reasonably well)
Example:
o If expression ‘X' has meaning ‘v’
e And expression ‘Y' has meaning ‘w'’

o Then expression ‘(X) / (Y)' has meaning ‘whatever
number you get when you compute '

What if ‘v’ is not a number, or ‘w’ is zero?

syntax

Overview

Today we will look at:
e syntax: Describe structure of programs
e semantics: Derive meaning from syntax

o static semantics: Meaning that is assigned before the
program runs
(mostly types, errors)

o dynamic semantics. Run-time meaning

o We won't explore this separation in detail today

e types: Describe ‘semantic structure’ of programs

syntax

Backus-Naur Form: Specifying Syntax

Assume nat is a natural number:
Formalise the rules with Backus-Naur-Form (BNF):

@ 'Any number is an expression.’
e expr::= nat
e 'Any two expressions with a + in between is also an
expression.’
o expr::= (expr)'+'(expr)
e 'Any two expressions with a *
expression.’

in between is also an

o expr::= (expr)'*'(expr)

Or in short:

a1
3

expr ::= nat | {expr)‘+'(expr) | (expr)*'(expr)

syntax

Backus-Naur Form: Example

expr ;= nat | (expr)'+'(expr) | (expr)*'(expr)

(142)*3 (expr

)
— T~

1 2 3

K\/
</

expr)

+(2*3)

Ambiguity! Parsers must know which parse we mean!

syntax

Syntax of a simple toy language

Syntax of language STOL:

expr = nat
| (expr)'+'(expr)
| ‘ifnz’(expr)‘then’(expr)‘else’(expr)
Examples:
o5
e 5 + 27

e ifnz 5 + 2 then 0 else 1

syntax

Meaning of our toy language: examples

What we want the meaning to be:

5 5
5 + 27 32
ifnz 5 + 2 then 1 else 0 | 1

Can we describe this formally?

semantics

Defining Meaning

The principal schools of semantics:

Semantics
Denotational Operational Axiomatic

@ Structural Algebraic

semantics

Denotational Semantics

(expr)
\
(expr)
o
1 + 2 * 3
Bl-s
: Set or ‘Domain’

Strachey brackets

e Maps program to mathematical object
e Equational theory to reason about programs

Directly maps program to its mathematical ‘meaning’

semantics

Denotational semantics of STOL

Distinguish:
e nat is set of program numbers (0, 1, 2, ...)
(In compilers: character strings)
o N is set of natural numbers (0, 1, 2, ...)

(In compilers: unsigned int or Biglint types)

n € nat
e, e, 6,63 € expr
0 <= n=0
[= 1 < n=1
2 << n=2

[ei] + [e2]
{ [e2] < [e] #0

[e3] <= [aa] =0

[er+er]

[ifnz e; then e else &3]

semantics

Operational Semantics: The two branches

e Natural Semantics (Big-Step Semantics)
o p | v: p evaluates to v
o Describes complete evaluation
o Compact, useful to describe interpreters
e Structural Operational Semantics (Small-Step Semantics)
o p1 — p2: p1 evaluates one step to p»
o Captures individual evaluation steps
o Verbose/detailed, useful for formal proofs

semantics

Natural (Operational) Semantics

Preconditions

Program/Expression Value

If P1,..., P, all hold, then e evaluates to v.
e e: Arbitrary program (expression, in our example)

e v: Value that can't be evaluated any further (natural
number, in our example)

semantics

Natural Semantics of our simple toy language

n,n,ny,n3 € nat
€,61,6,€63 & exXpr

esdnm elnm n=n+m
nln (val) ei+e | n (add)
eedn n#0 el m
ifnz e¢; then e, else e3 |

(ifnz)

e1 0 ezl ns
ifnz e¢; then e, else e3 | n3

(ifz)

Note:
o () is arithmetic addition
e + is a symbol in our language
e For simplicity, we set nat = N

semantics

Natural Semantics: Example

373 (@) a3 (@) 55, . /
31205 (add) ouo(v‘,jf
ifnz 312 then 1 else 040 U™

semantics

What's the point?

e Denotational and natural semantics look very similar
e Structural differences:

o Denotational semantics describe a function [—]

o Natural semantics define a relation ()

o Denotational semantics relies on mathematical domain
with underlying equational theory

e Practical differences:

o Natural Semantics requires less formal apparatus to
describe (no domains)

o Natural Semantics can't describe partial progress in
non-terminating programs

semantics

Extending our language with ‘let’

Name bindings x € name:

expr = nat
| (expry'+ (expr)
| ‘ifnz’(expr)‘then’(expr)‘else’(expr)
| name
| ‘let'name'="(expr)‘in'(expr)

Example:
[let x =2 + 3 in x + x| =10

But what is [x] by itself?

semantics

Environments

The meaning of a variable depends on what value we bind it to.

| Environment: E : name — value |

e Environments are partial functions from names to ‘values’
e In our running example, value = nat

Notation:
let EE = E+x+—v

then:

R B = y=x
Ely) = { E(y) otherwise

semantics

Environments in Denotational Semantics

Introduce E as index to semantic function:

[-]e=...

n
€,€1,€2,€3
X

[n]e

[ei+ex] e

[ifnz e; then e, else e3¢

[x]e

[let x =¢; in]

I mmm

nat

expr

name

n interpreted in N

ler]e + [e2] e

{ [e]e <= [a]e#0
les]e <= [eale=0

E(x)

[[e2]] E+x—[ei]e

semantics

Environments in Natural Semantics

We borrow the turnstile (F) from formal logic:

Eterlnm EFeldn n=n+n
Erngn v EF erter I n (add)

EFeln n#0 EFelm (ifnz)
Et ifnz e; then e, else e3 | m

El—ellLO E}—63Un3 (IfZ)
Et ifnz e; then e, else e3 n3

Etedv (E+x—=v)kFelV
Etlet x=¢ in e | v/

(let)

semantics

STOL-S: Extending our language with assignments

Side effects play an important role in realistic programs
@ Must be modelled, for realism

e Tricky to model = purely functional languages have
simpler semantic models

We extend STOL to STOL-S:

expr = nat
expr)‘+' (expr)
‘ifnz’(expr) ‘then’(expr)‘else’ (expr)
name
‘let'name'="(expr)‘in'(expr)
‘ref’(expr)
“I'(expr)
(expr)':="(expr)

|
|
|
|
|
|
| Clexpr)'s (expr))

semantics

STOL-S: State updates

° allocates memory cell, stores 42

(cf. malloc() or new).

° Reads memory from memory cell in variable p
(cf. *p for pointers p in C).

° Updates memory cell in p with 23

(cf. *p = 23 in C).
° ’ (p := 23; !p) ‘ Sequence: assigns, then reads&returns
(Sequencing operation, cf. { *p = 23; return *p; })

Example:
let r = ref 7
in (
r :=Ir + lr;

Ir + 1)

semantics

Stores

| Store: S : ref — value

e Analogous to environments
e Store maps memory references (‘ref’) to ‘values’
e Again, value = nat (for now)

semantics

Stores in Natural Semantics (1)

e Recursive evaluation may update the store. ..
@ ...which the caller must be able to see.

o We adjust |} to evalute tuples (e, S):
Er{e.S5) 4 (v,.5)
means:

e Given an environment E and a store S:
e e evaluates to v, and
o S is updated to S’ in the process

Example:

E+ <61, 5> [} <n1, S/> E+ <62, S/> U <n2,5”> n=ny+no
Et (e1+e,S) |} (n,S")

(add)

State is threaded through the rule: evaluation order

seman tics

Stores in Natural Semantics (2)

Et+ (e, S) | (v,S") pfreshin S
Er (refeS) | (p,S"+p—v)

(ref)

Er{e,5) 4 {p.S) v=>5(p)
Et+ (le,S) | (v,S)

(read)

Er{(e,S) | (p,Sy EF{e,S) I (v,S") pedom(S")
Er{(eg:=e,5) (0, +p—v)

(update)

Et{e1,S) | (v,S) EF(e,5) | (Vv 5"
Et+ (Cer;e),5) I (v/,S")

(seq)

Analogously for the other rules.

semantics

Defining Meaning

Let's consider the other schools of semantics now:

Semantics
Denotational Operational
Natural w‘ |gebraic

semantics

Structural Operational Semantics (SOS)

(Definition on STOL)

€1 —*0
ifnz ¢; then e else e3 — &3

(ifz)

e1 —»*n 3In'.n—n" n#0
ifnz e; then & else &3 — &

(ifnz)

Comparison to Natural Semantics:
JC expr x nat —C expr X expr
rhs is alwyas fully evaluated | rhs can be intermediate result

SOS can capture intermediate computational results

semantics

Axiomatic Semantics

Describe statements— not good fit for our current langauge

{P}statement{ Q}

e P: Precondition
o @: Postcondition
e if P holds, then statement ensures that @ holds

Example:
{x>0}x := x + 1;{x >0}

Frequently used for “design-by-contract” software
development

semantics

Algebraic Semantics

Specification using techniques of abstract algebra, e.g.:

Sorts list, int, string
Operations empty : list
add . list x string — list
get . list x int — string
size . list — int
concat : list x list — list
Axioms size(empty) = 0

Ve : list, s : string.get(add(?, s), size({)) = s
Ve : list, s : string.size(add(?, s)) = size(¢) + 1
Ve, 0y : list.size(concat({1, £2)) = size({1) + size(£2)

semantics

Comparison

e Denotational Semantics
Equational theory, also describes nontermination

e Natural Semantics
Compact, describes interpreter, doesn't give semantics to
nonterminating programs

e Structural Operational Semantics
Describes evaluation strategy, approximates semantics for
nontermination

e Axiomatic Semantics
Describes effect of statements (before/after), no
nontermination

o Algebraic Semantics
Describes effect of operations on opaque data structures,
no nontermination

e.T

Types are contracts: e must keep any promise made by 7
Typical promises:

e '‘Any e : 7 is a number between 0 and 42’
e '‘Any e : 7T is a record with a field x’
e '‘Any e : 7 has a method m(Q)’

Types as Sets

Example:
e int: The type of integers, Z
e nat: The type of natural numbers, N

STOL with Subtraction

Let's introduce subtraction to STOL:

expr 1= nat
| (expr)'+'(expr)
| ‘ifnz’(expr)‘then’(expr)‘else’(expr)
| name
| ‘let'name'='{expr)'in’(expr)
| (expr)’~"(expr)

A type system for STOL

e Goal: Detect which variables may be negative.
e Approach: Type analysis

Type environment: [: name — type

where type is the set of all types.

[+ n:nat (nat)
Nx)=r
Frxr (v

l-e:0 (T+x—o)Fe:r
lFlet x=¢ in e : 7

(let)

Addition and Subtraction

I+ n:nat (nat)

F e :int F.I—ez:int
Fe-6:int

(sub)

How can we pass nat values to subtraction, though?

types

Subtypes and Implicit Conversion

One option:
e Introduce subtyping
e 7 <: o iff 7 is subtype of 0.

e Meaning: if e : 7, then we can use e
anywhere we need a o.

Formalised in the Subsumption rule:

l-n:7 7<:0

S —- (subsumption)

We set: nat <: int

Example

(z) =nat

"+ z:nat nat <:int [’'F2:nat nat <:int

[+ z+—natht z:int [~2:int
l-1:nat Mk z-2:int

F1let z=1 in z-2:int

where ' =T 4+ z — nat

STOL-S and assignments

expr ::= nat

| ‘ref'(expr)

| Vexpr)

| (expr)':="(expr)

| Clexpr)'s (expr)’

How do we type references?

types

STOL-S and assignments: parametric ‘ref’

e Refences need their own type
e But: must distinguish references to nat vs. references to
int
... and reference-to-reference-to-nat etc.
e Solution: parametric type ref(a)
o ref(nat): reference to natural numbers

o ref(int): reference to integers
o ref(ref(int)): reference to references to integers

STOL-S: typing rules

Ete:a
E I ref e: ref(a) (ref)

Et+ e:ref(a)
Erle o (9

Ete :ref(a) EFe:a
Et e := e :nat

(update)

types

Subtyping ref and its parameters

Assume:
i1 int
ri : ref(int)
r, : ref(nat)

Should ref(int) and ref(nat) be subtypes?
e ref(int) :> ref(nat) ?
o If so: r, := i typechecks
o Can assign —1 to non-negative memory!
e ref(int) <: ref(nat) ?
o If so: I(ifnz 1 then r; else r,):nat

o Type checker believes that read from (possibly negative)
memory is nonnegative!

Covariance and Contravariance

(o) <: 7(B)
...is allowed if 7's type parameter is. ..
(no constraint) a<:f
(no constraint) | bivariant covariant
a:>f contravariant invariant (a =)

Rules of thumb:
e Type parameter occurs read-only: covariant
e Type parameter occurs write-only: contravariant

Using Type systems

Type systems should have the following properties:

e preservation: a well-typed program does not change its
type during execution

e progress. a well-typed program does not ‘get stuck’ during
execution

If these are guaranteed, we can:
e Use type systems to check for errors

e Use type systems to analyse properties (e.g.,
‘could this number ever be negative?’)

literature

Literature (1)

e Natural Semantics:

o Gilles Kahn, “Natural Semantics”
e Structural Operational Semantics:

o Gordon Plotkin, “Natural Semantics”
e Axiomatic Semantics:

o David Gries, “The Science of Programming”
o C.A.R. Hoare, “An axiomatic basis for computer
programming’. Communications of the ACM 12

e Algebraic Semantics:

o S Antoy. “Systematic design of algebraic specifications”. In
Proceedings of the Fifth International Workshop on
Software Specification and Design

literature

Literature (2)

e Types:

o Kim Bruce, “Foundations of Object-Oriented
Programming”
e Benjamin Pierce, “Types and Programming Languages”

e Proofs:
o Jean-Yves Girard, Taylor, Lafont: “Proofs and Types”

Next week:

Static Program Analysis

	syntax
	semantics
	types
	literature

